
Received:

Revised:

Accepted:

Published:

Citation: Zhou, G.; Hong, F.; Zhang,

Z.; Fan, G. Diversified Experience

Replay for Multi-Agent Reinforcement

Learning. Journal Not Specified 2025, 1,

0.

Copyright: © 2025 by the author.

Submitted to Journal Not Specified for

possible open access publication under

the terms and conditions of the

Creative Commons Attri- bution (CC

BY) license (https://creativecommons.

org/licenses/by/4.0/).

Article

Diversified Experience Replay for Multi-Agent Reinforcement
Learning
Guangchong Zhou 1,2, Feng Hong 3, Zeren Zhang 1,2 and Guoliang Fan 1

1 The Key Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation,
Chinese Academy of Sciences

2 School of Artificial Intelligence, University of Chinese Academy of Sciences
3 Cooperative Medianet Innovation Center, Shanghai Jiao Tong University
{zhouguangchong2021, zhangzeren2021, guoliang.fan}@ia.ac.cn, feng.hong@sjtu.edu.cn

Abstract: To enhance the capability of off-policy multi-agent reinforcement learn- 1

ing (MARL), previous research has extensively investigated the agents’ decision-making 2

and credit assignment. However, the role of experience replay is largely overlooked, with 3

related works limited to prioritizing samples based on their TD-errors. Despite their im- 4

provements, more accurate Q-value estimations do not guarantee better decisions, as the 5

relative advantage of different situations is more crucial for the greedy policy. To this 6

end, we propose Diversified Experience Replay (DivER), which increases the experience 7

diversity in the sampled mini-batch. Agents are guided to learn behaviors that transition 8

to more superior situations, thus enhancing training efficiency. DivER is compatible with 9

any off-policy MARL methods and has been experimentally proven to be effective across 10

various tasks and algorithms. 11

Keywords: Off-policy MARL; Prioritized experience replay; Sample diversity 12

0. Introduction 13

Multi-agent reinforcement learning (MARL) has recently demonstrated remarkable 14

capability in handling various real-world tasks, such as flocking control [1,2], autonomous 15

driving [3,4], and traffic light control [5]. To deal with the partial observability and the 16

vast joint spaces of agents, most MARL algorithms follow the centralized training and 17

decentralized execution (CTDE) paradigm [6] where global information is only accessible 18

during training. Especially, off-policy methods [7,8] enjoy high sample efficiency and great 19

scalability, ultimately achieving superior performance in popular benchmarks. 20

Off-policy methods still encounter challenges including insufficient exploration, be- 21

havioral homogeneity, and inaccurate credit assignment. To address them, a number of 22

recent studies have focused on improving decision-making mechanisms [9–13] and modi- 23

fying the calculation of value mixing [14–17]. However, the experience replay, a technique 24

widely used by off-policy methods to boost sample efficiency, has been severely overlooked. 25

A novel research is MAC-PO [18] that prioritizes the samples in replay buffer via regret 26

minimization. To our knowledge, no other research on multi-agent experience replay has 27

gained recognition recently, and Prioritized Experience Replay (PER) [19] and its variants 28

remain the most widely used approaches. PER prioritizes the samples with high magnitude 29

of TD-errors and subsequently obtains more accurate global Q-value estimations. 30

Figure 1 shows the results of different mini-batch sampling strategies on a toy replay 31

buffer. It can be seen that the default uniform sampling strategy does not guarantee 32

comprehensive coverage of all experiences, while the outcomes of PER based on TD-error 33

Version July 14, 2025 submitted to Journal Not Specified https://doi.org/10.3390/1010000

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://doi.org/10.3390/1010000


Version July 14, 2025 submitted to Journal Not Specified 2 of 16

(a) Full data in replay
buffer

(b) Uniform (c) TD-error PER (d) DivER

Figure 1. The comparison of different sampling methods on a toy replay buffer, in which the transition
data is distributed in four regions. (a) The visualization of all data in the replay buffer. (b)(c)(d) The
mini-batch derived by the Uniform, PER, and DivER sampling strategies.

exhibit significant homogeneity and imbalance. We argue that, as agents in most off-policy 34

methods are value-based and employ greedy policies, the relative superiority among 35

different states can better guide the agents’ decision-making towards superior states rather 36

than precise state value estimations. Therefore, at each training step, a mini-batch with 37

greater sample diversity is more conducive to the agent’s understanding of the relative 38

merits of different experiences, thereby accelerating policy improvement. To this end, we 39

propose Diversified Experience Replay (DivER), a novel and flexible method to improve 40

the sample diversity of the mini-batch at each training step. DivER learns a representation 41

model to transform the entire episode of states into a compact vector, based on which 42

it measures the discrepancy between experiences in the replay buffer and generates the 43

mini-batch of diversified samples. Our main contributions can be summarized as follows: 44

• We explore the multi-agent experience replay which is largely overlooked by previous 45

research, and are the very first to take the sample diversity of the mini-batch into 46

consideration, thereby furnishing a novel perspective for subsequent studies. 47

• We propose a prioritized experience replay method called DivER, which improves 48

the sample diversity of the mini-batch at each training step. As DivER only modifies 49

the experience replay mechanism without altering the MARL framework, it can serve 50

as a plug-and-play technique for any off-policy MARL methods and achieve stable 51

improvements. 52

1. Background 53

1.1. Dec-POMDP 54

A fully cooperative multi-agent system (MAS) is typically represented by a decentral- 55

ized partially observable Markov decision process (Dec-POMDP) [20], which is composed 56

of a tuple G = ⟨S ,U ,P ,Z , r,O, n, γ⟩. At each time-step, the current global state of the envi- 57

ronment is denoted by s ∈ S , while each agent a ∈ A := {1, . . . , n} only receives a unique 58

local observation za ∈ Z generated by the observation function O(s, a) : S ×A → Z . Sub- 59

sequently, every agent a selects an action ua ∈ U , and all individual actions are combined 60

to form the joint action u = [u1, . . . , un] ∈ U ≡ Un. The interaction between the joint action 61

u and the current state s leads to a change in the environment to state s′ as dictated by 62

the state transition function P(s′|s, u) : S × U × S → [0, 1]. All agents in the Dec-POMDP 63

share the same global reward function r(s, u) : S ×U → R, and γ ∈ [0, 1) represents the 64

discount factor. 65

1.2. One-shot Coreset Selection 66

In supervised learning, let us consider a classification task with a training dataset 67

containing N examples drawn i.i.d. from an underlying distribution P. The dataset is 68

denoted as D = {(xi, yi)}N
i=1, where xi is the data and yi is the ground-truth label. Given a 69



Version July 14, 2025 submitted to Journal Not Specified 3 of 16

pruning rate α ∈ (0, 1), the goal of one-shot coreset selection is to select a training subset B 70

from the whole dataset to maximize the accuracy of models trained on this subset, which 71

can be formulated as the optimization problem below [21]: 72

min
B⊂D, |B||D|≤1−α

E(x,y)∼P[l(x, y; hB)], (1)

where l(·, ·) is the loss function, and hB is the model trained on the subset B. To find the 73

optimal subset, previous methods typically rank the examples based on their importance 74

and select the most important |B| examples to form the subset. Different metrics, including 75

prediction error [22,23], gradient norm [24], area under the margin (AUM) [25], and EL2N 76

score [26], are proposed to measure the importance of each sample. 77

Off-policy MARL methods commonly employ the replay buffer, from which a mini- 78

batch of samples are selected for subsequent model updates. However, the training process 79

of MARL differs significantly from supervised learning, and the design of effective coreset 80

selection (known as prioritized experience replay) methods for MARL requires further 81

investigation. 82

2. DivER 83

2.1. Motivation 84

In this section, we mainly focus on value-based methods and use D and B to denote 85

the replay buffer and sampled mini-batch in MARL, respectively. Most existing methods 86

directly extend PER [19] to MARL, which prioritizes the samples with high magnitude of 87

TD-errors. Therefore, these methods still follow the supervised learning target in Equation 1 88

with the following loss function: 89

l(st, ut, rt, st+1) =

(
rt + γ max

ut+1
Q−tot(st+1, ut+1)−Qtot(st, ut)

)2
,

in which st and ut are the global state and joint action at time step t, Q−tot is a pe- 90

riodically updated target network of Qtot. As the experiment results in Figure 2 show, 91

the absolute value of TD-error during the training process of QMIX [8] is significantly 92

reduced with the integration of PER (named QMIX-PER), indicating that PER effectively 93

improves the accuracy of Q-value estimation. However, a more accurate value estimation 94

does not necessarily lead to the policy improvement and the increase in the overall return 95

of the system. Considering the training paradigm of MARL, we modify the objective for 96

mini-batch selection at each training step to Equation 2: 97

max
B⊂D

J(π′)− J(π) =max
B⊂D

Es0 [V
π′(s0)]−Es0 [V

π(s0)]

=max
B⊂D

Eπ′

[
∞

∑
t=0

γt[r(st, at) + γVπ(st+1)−Vπ(st)]

]
, (2)

where π′ is the updated policy based on π after trained on mini-batch B and V(·) is 98

the state value function. We assert that, rather than precisely predicting the system value in 99

every state, understanding the relative superiority among states could be more helpful in 100

guiding the agents to learn behaviors that transition to superior states, thus facilitating effi- 101

cient policy improvement. To this end, we propose Diversified Experience Replay (DivER), 102

which enhances the training efficiency by increasing the experience diversity in the sampled 103

mini-batch. 104



Version July 14, 2025 submitted to Journal Not Specified 4 of 16

Figure 2. The absolute value of TD-error during the training processes of QMIX with and w/o PER
on two SMAC scenarios.

Figure 3. Overview of DivER architecture. Red dashed box depicts the off-policy MARL method.
Green dashed box is the representation model in DivER. fEN and fAR denote the state encoder and
the autoregressive model respectively.

2.2. Learning Episode Representation 105

Generally, each piece of data in MARL includes information from all time steps of 106

an entire episode from start to end. Therefore, a single state at a specific time step cannot 107

sufficiently represent the whole episode, nor can it be directly used to compare similarities 108

with other episodes. Instead, we treat the sequence of states in an episode as a trajectory τ of 109

the system, and summarize them into a compact vector z. The mutual information between 110

τ and z measures the reduction of the uncertainty of trajectory prediction after knowing the 111

representation z, which is defined as Equation 3. By maximizing the mutual information, 112

we extract the underlying latent information that the trajectory and its representation have 113

in common. 114

I(τ; z) = ∑
τ,z

p(τ, z) log
p(τ|z)
p(τ)

(3)

Next, it is necessary to design a learnable network architecture based on the training 115

objectives. A severe challenge is that a powerful generative model for p(τ|z) in Equation 3 116

is computationally intense and would waste capacity at modeling the complex relationships 117

between the states in the sequence. Besides, unimodal losses like mean squared error and 118

cross-entropy are not sufficient for predicting high-dimensional data. Inspired by Oord 119

et al. [27], we do not predict the future trajectory directly with a generative model, but we 120

model a density ratio which preserves the mutual information between the next trajectory 121

τt+1 and the representation of current trajectory zt as: 122

f (xt+1, zt) ∝
p(xt+1|zt)

p(xt+1)
, (4)



Version July 14, 2025 submitted to Journal Not Specified 5 of 16

in which τt+1 = [τt, xt+1] is simplified to xt+1, since τt is already known when cal- 123

culating zt. To guarantee the output of f is a positive real score, we implement it with a 124

simple log-bilinear function: 125

f (xt+1, zt) = exp
(

xT
t+1Wzt

)
, (5)

where xt+1 is the encoded state at next step. More complex networks can also be used 126

to construct f . With the density ratio as an alternative object, the networks are relieved 127

from modeling the high dimensional trajectory. Though the distribution p(τ) or p(τ|z) 128

cannot be evaluated by the model, we can estimate them using samples from the replay 129

buffer instead. The overall architecture of DivER is depicted in Figure 3, and it can be 130

clearly seen that the workflow of DivER is fully decoupled from the MARL framework. At 131

each time step, the state is encoded and fed into the autoregressive model to generate the 132

trajectory representation zt, which helps predict the encoded state xt+1 at next step. 133

Consider a mini-batch B of N episodes with length T. For each episode, zt has one 134

positive label p(xi
t+1|zt) and N − 1 negative samples {xj

t+1|j = 1, ..., i− 1, i + 1, ..., N} from 135

other episodes. By referring to contrastive learning [27,28], we learn the representation 136

model by maximizing the target in Equation 6 as the following lemma holds: 137

Lemma 1. Equation 6 is a lower bound for mutual information I(xt+1, zt), and maximizing it 138

leads to f (xt+1, zt) approximating the density ratio in Equation 4. 139

JD =
N

∑
i=1

T−1

∑
t=1

log
f (xi

t+1, zi
t)

∑N
j=1 f (xj

t+1, zj
t)

(6)

Proof. See Appendix B.1. 140

With the learned representation model, we can summarize the whole state sequence 141

of length T into a compact vector zT for downstream tasks. 142

2.3. Sampling Methodology 143

Next, we need to sample episodes from the replay buffer to obtain the mini-batch 144

based on their trajectory representations. Previous methods for prioritized experience 145

replay commonly measure the importance of samples using metrics such as training errors 146

and gradients, then rank the samples and select the most significant ones. However, the 147

ranking approach is not applicable to DivER, as “diversity” is not an attribute possessed 148

by a single agent but rather a global metric for the overall system. Identifying a fixed-size 149

mini-batch with the optimal diversity from the replay buffer constitutes an NP problem, 150

making it both impractical and unworthy to solve. Therefore, the sampling strategy of 151

DivER needs to strike a balance between diversity and computational efficiency. Given 152

a replay buffer D and sampled mini-batch B, we first employ the concept of “coverage 153

radius” to interpret the diversity: 154

Definition 2 (r-cover and coverage radius). A set of points D are distributed in a metric 155

space (X, d). We say mini-batch B ⊂ D is a r-cover of D if: 156

D ⊆
⋃

x∈B
B(x, r),

where B(x, r) = {x′ ∈ X|d(x′, x) < r} is an open ball of radius r centered at point x. 157

The lower bound of r is called the coverage radius. 158

When the mini-batch size is fixed, a smaller coverage radius indicates that the mini- 159

batch encompasses diverse episodes and represents the entire replay buffer more sufficiently. 160



Version July 14, 2025 submitted to Journal Not Specified 6 of 16

While existing methods like uniform sampling and PER can not guarantee a small cover- 161

age radius due to randomness and distribution imbalance, we propose a new sampling 162

methodology for DivER presented in Algorithm A1 in Appendix C. 163

Simply speaking, we first cluster the trajectory representations zT of different episodes 164

in the latent space to obtain multiple spherical clusters. Next, DivER uniformly samples an 165

equal proportion of episodes from each cluster, which are then merged to form the final 166

mini-batch. The episodes from different clusters help maintain a low coverage radius and 167

high sample diversity for the mini-batch B, while the uniform sampling within each cluster 168

guarantees the computational efficiency of DivER. 169

2.4. Implementation 170

Overall learning algorithm. The overall algorithm of DivER after integrating with the 171

off-policy MARL framework is displayed in Algorithm A2 in Appendix C. On the basis 172

of the original MARL method, DivER only introduces an additional representation model 173

during training and fully preserves the efficiency of the decision-making process. The 174

parameter updates of the MARL framework and the representation model in DivER are 175

independent and do not interfere with each other, enabling DivER to be easily integrated 176

with different frameworks and achieve stable performance. 177

Hyperparameter settings. The clustering algorithm and the number of clusters are 178

two main hyperparameters for DivER. DivER employs the K-Means clustering algorithm 179

by default in our implementation but is also compatible with various other algorithms such 180

as DBSCAN [29] and Gaussian Mixture Models, and choosing a clustering algorithm that 181

aligns with the true sample distribution can improve the effectiveness of DivER. A larger 182

number of clusters requires higher computational costs but also leads to a smaller size for 183

each cluster, which means a corresponding reduction in the coverage radius and improved 184

sample diversity. For fairness, we set the number of clusters to 8 for algorithms that specify 185

this hyperparameter, and employ the default hyperparameters for other algorithms. 186

3. Experiments 187

3.1. Experimental Setup 188

Environments. We select the most popular environment for MARL, StarCraft II Multi- 189

Agent Challenges (SMAC) [30], as the main testbed to facilitate an intuitive comparison 190

with previous off-policy MARL methods. SMAC contains two armies of units, and each ally 191

is controlled by a decentralized agent that can only act based on its local observation while 192

the enemy units are controlled by built-in handcrafted heuristic rules. To address SMAC’s 193

lack of stochasticity and get rid of open-loop policies, we further conduct experiments on 194

the more challenging SMACv2 [31], which severely restricts the observability of agents and 195

randomly initializes the scenarios. In our experiments, the difficulty level of built-in AI 196

is set to 7 (very hard), and the version of StarCraft II engine is 4.6.2 instead of the simpler 197

4.10. Please note that results from different versions are not always comparable. 198

Baselines. In our experiments, we select the most popular and recognized MARL 199

framework QMIX [8] as backbone, on which we conduct three different sampling strategies, 200

including uniform, PER [19] and MAC-PO [18], as baselines. Uniform and PER are two 201

common sampling strategies, while MAC-PO prioritizes samples in MARL via regret 202

minimization. All baselines are implemented using the source codes in their original 203

papers. 204



Version July 14, 2025 submitted to Journal Not Specified 7 of 16

Figure 4. Experiment results of DivER and baselines on SMAC.

Figure 5. Experiment results of DivER and baselines on SMACv2.

3.2. Experiment Results on SMAC 205

We present experiment results on 6 Hard and Super Hard SMAC scenarios in Figure 4. 206

The solid line represents the median win rates during training, with the 25-75% percentiles 207

being shaded. 208

Although RODE and LDSA achieve higher win rates than DivER in 3s_vs_5z, both of 209

them promote multi-agent cooperation heuristically by increasing behavioral diversity of 210

agents, leading to unstable performances across scenarios. Meanwhile, DivER focuses on 211

sample diversity in the mini-batch, which can more broadly adapted to different scenarios. 212

As we can see, DivER reaches the best performances in 4 out of all 6 scenarios with 213

both the highest win rates and the earliest rise-ups, indicating its great sample efficiency. 214

Since DivER is implemented on the basis of QMIX, we can observe that its performance 215

significantly surpasses that of QMIX in all scenarios. Besides, DivER also outperforms the 216

other prioritized experience replay method QMIX-PER. These evidences demonstrate the 217

effectiveness and superiority of our proposed method. 218

3.3. Experiment Results on SMACv2 219

Ellis et al. [31] argue that the agent in SMAC may learn open-loop policy conditioned 220

on the time step rather than the observation, thus can not adapt to diverse situations. There- 221

fore, we further test DivER in the more random and difficult SMACv2 environment, and 222

results are shown in Figure 5. Meanwhile, PER sometimes even degrades the performance 223

of QMIX, and methods based on behavioral diversity exhibit severe performance decline. 224

Meanwhile, DivER makes stable improvements on the basis of QMIX, and its learning 225

curves are positioned above and to the left of the baselines in all three scenarios. This 226

suggests the high sample efficiency and stable performance of DivER, highlighting the 227

broad effectiveness and great reliability of our proposed mini-batch sampling strategy 228

based on sample diversity. 229

3.4. Ablation Study 230

In this subsection, we conduct ablation studies to investigate two issues: (a) Can 231

DivER be migrated to other frameworks? (b) Is DivER compatible with different clustering 232



Version July 14, 2025 submitted to Journal Not Specified 8 of 16

algorithms? Two challenging Super Hard tasks, MMM2 and corridor, are employed as 233

testbeds. 234

The wide applicability of DivER. As previously asserted, DivER can be integrated 235

with any off-policy MARL framework. To better prove this claim, we further test the efficacy 236

of integrating DivER with VDN [7] and Qatten [16] by comparing their performances 237

with the original algorithms, and the results are in Figure 6(a). VDN is the simplest 238

value-decomposition method and could not solve the two tasks at all, but its capability is 239

significantly enhanced with the integration of DivER. In MMM2, DivER also significantly 240

enhances the performance of Qatten. Meanwhile, although the final win rates of Qatten with 241

and without DivER are very close in corridor, DivER still notably accelerates the learning 242

process. This shows that DivER can be widely used in different MARL frameworks and 243

maintain great effectiveness. 244

(a) DivER with other off-policy MARL methods. (b) DivER with different clustering algorithms.

Figure 6. The results of DivER’s variants.

Compatibility with different clustering algorithms. As different clustering algo- 245

rithms fit in different sample distributions and have distinct computational costs, DivER 246

needs to be compatible with diverse algorithms to adapt to various tasks. Besides the 247

default K-Means algorithm, we have also investigated Mini-Batch K-Means, DBSCAN, and 248

Gaussian Mixture Models (GMM), and results are shown in Figure 6(b). While GMM is not 249

suitable for the MMM2 scenario, it exhibits the best performance in corridor. Mini-Batch K- 250

Means enjoys high computational efficiency and performs close to K-Means in MMM2, but 251

the inaccurate clustering also leads to failure in corridor. Therefore, choosing an appropriate 252

clustering algorithm is of great importance for improving both the speed and performance 253

of DivER. 254

4. Conclusion 255

Previous works have extensively investigated approaches to enhance off-policy MARL 256

algorithms’ performance, but few have considered the experience replay. Most related 257

works still follow the prioritized experience replay techniques in the single-agent domain, 258

which rank all experiences in the replay buffer based on their “importance scores” and 259

select the most significant ones. In this work, we argue that a mini-batch with a higher 260

sample diversity can help the model learn the relative advantage of different situations, 261

thus accelerating the improvement of greedy policies. To this end, we propose a novel 262

technique called Diversified Experience Replay (DivER) to improve the sample diversity 263

of the mini-batch in every training step. DivER first learns a representation model to 264

embed the information of the entire sequence of states, based on which it then clusters 265

the experiences in the replay buffer into groups and selects diversified experiences for the 266

mini-batch. This sample-diversity perspective demonstrates broad effectiveness across a 267

variety of tasks. Besides, the workflow of DivER is independent of the MARL framework 268

and does not affect the efficiency of agents’ decision-making, making it a plug-and-play 269

technique compatible with any off-policy MARL framework. We hope DivER can serve as 270

a versatile and stable method for addressing general multi-agent tasks, as well as providing 271

a new perspective for further research. 272



Version July 14, 2025 submitted to Journal Not Specified 9 of 16

Appendix A Related Works 273

Appendix A.1 Off-policy MARL 274

In off-policy multi-agent reinforcement learning (MARL), agents learn from past ex- 275

periences collected using a policy different from the current one, thereby improving the 276

data efficiency. Value-based MARL algorithms are almost exclusively off-policy. Indepen- 277

dent Q-learning [32] trains independent action-value functions for each agent, which is 278

later combined with deep learning techniques by Tampuu et al. [33]. Under the CTDE 279

framework, value decomposition is widely used to achieve credit assignment. VDN [7] 280

and QMIX [8] estimate the optimal joint action-value function by combining mentioned 281

utilities via a summation function and a learned state-dependent monotonic function, 282

respectively. QTRAN [34] and QPLEX [15] further loose the monotonicity constraints in 283

QMIX and extend the class of value functions. Weighted-QMIX [14] introduces a weighting 284

mechanism into the projection of monotonic value factorization to place more importance 285

on better joint actions. QPro [17] casts the factorization problem as regret minimization 286

over the projection weights of different state-action values. For policy-based off-policy 287

methods, MADDPG [6] utilizes the ensemble of policies for each agent that leads to more 288

robust multi-agent policies, showing strength in cooperative and competitive scenarios. 289

The extensions [35–37] of MADDPG have been proposed to realize further improvements 290

on the original algorithm. 291

Appendix A.2 Experience Replay 292

Online reinforcement suffers from two issues: (a) strongly correlated transitions that 293

break the i.i.d. assumption in deep learning, and (b) the rapid forgetting of possibly rare 294

experiences that would be useful later on. Experience replay [38] stores the collected ex- 295

periences in a replay buffer for subsequent reuse, which effectively mitigates the above 296

issues and improves the sample efficiency. While most off-policy methods uniformly sam- 297

ple transitions from the replay buffer, Schaul [19] asserts that some experiences are more 298

valuable for model training than others and proposes prioritized experience replay (PER), 299

which replays transitions with higher magnitude of temporal-difference (TD) error more 300

frequently. Subsequently, further modifications and improvements have been made to the 301

PER algorithm. Lee et al. [39] design a sampling technique which updates the transitions 302

backward from a whole episode. PSER [40] prioritizes sequences of experience instead of 303

single transitions. ERO [41] learns a replay policy to optimize the prioritization function. To 304

favor recent transitions and abandon the outdated ones, Sun et al. [42] sample transitions 305

according to the similarities between their states and the agent’s state, while Novati and 306

Koumoutsakos [43] control the similarity between the replay behaviors and the current 307

policy. Liu et al. [44] use the regret minimization method to design the prioritized experi- 308

ence replay scheme. MaPER [45] improves experience replay by using a model-augmented 309

critic network and modifying the rule of priority. So far, most PER works are designed 310

for single-agent reinforcement learning. To extend PER to multi-agent scenarios, some 311

research directly migrates previous works to off-policy MARL methods [46,47], while a 312

limited number of studies consider the adaptation to multi-agent systems [18,48]. 313



Version July 14, 2025 submitted to Journal Not Specified 10 of 16

Appendix B Proofs 314

Appendix B.1 The Learning Target for DivER Model 315

Lemma A1. The Equation below is a lower bound for mutual information I(xt+1, zt), and 316

maximizing it leads to f (xt+1, zt) approximating the density ratio in Equation 4. 317

JD =
N

∑
i=1

T−1

∑
t=1

log
f (xi

t+1, zi
t)

∑N
j=1 f (xj

t+1, zj
t)

Proof. This Equation can be viewed as the categorical cross-entropy of classifying the 318

positive sample in contrastive learning, with f
∑ f being the predicted probability of the 319

model. We rewrite the optimal probability as p(d = i|Xt+1, zi
t) with d = i being the 320

indicator that xi
t+1 is the positive sample, and Xt+1 = {x1

t+1, ..., xN
t+1} being the set of all 321

encoded state at time t + 1 in mini-batch B. The probability that xi
t+1 was drawn from the 322

conditional distribution p(xt+1|zi
t) rather than the prior distribution p(xt+1) can be derived 323

as below: 324

p(d = i|X, zi
t) =

p(xi
t+1|zi

t)∏xk
t+1∈Xt+1\{xi

t+1}
p(xk

t+1)

∑N
j=1 p(xj

t+1|zi
t)∏xk

t+1∈Xt+1\{xi
t+1}

p(xk
t+1)

=

p(xi
t+1|z

i
t)

p(xi
t+1)

∑N
j=1

p(xj
t+1|z

i
t)

p(xj
t+1)

According to the above results, the optimal value for f (xi
t+1, zi

t) in Equation 6 is proportional 325

to
p(xi

t+1|zt)

p(xi
t+1)

, and is independent of the choice of the mini-batch size N. 326

Replace the term f (xt+1, zt) in JD with p(xt+1|zt)
p(xt+1)

, we have: 327

JD =
N

∑
i=1

T−1

∑
t=1

log


p(xi

t+1|z
i
t)

p(xi
t+1)

p(xi
t+1|z

i
t)

p(xi
t+1)

+ ∑xj
t+1∈Xt+1\{xi

t+1}
p(xj

t+1|z
i
t)

p(xj
t+1)



= −
N

∑
i=1

T−1

∑
t=1

log

1 +
p(xi

t+1)

p(xi
t+1|zi

t)
∑

xj
t+1∈Xt+1\{xi

t+1}

p(xj
t+1|zi

t)

p(xj
t+1)


≈ −

N

∑
i=1

T−1

∑
t=1

log

[
1 +

p(xi
t+1)

p(xi
t+1|zi

t)
(N − 1)E

xj
t+1

p(xj
t+1|zi

t)

p(xj
t+1)

]

= −
N

∑
i=1

T−1

∑
t=1

log

[
1 +

p(xi
t+1)

p(xi
t+1|zi

t)
(N − 1)

]

≤ −
N

∑
i=1

T−1

∑
t=1

log

[
p(xi

t+1)

p(xi
t+1|zi

t)
N

]
= I(xt+1, zt)− log N

Therefore, I(xt+1, zt) ≥ log N +JD, which means JD is a lower bound for mutual informa- 328

tion I(xt+1, zt). It is worth noting that the inequality approximation in the above formula 329

becomes more accurate as N increases, so increasing the mini-batch size is helpful for the 330

training of DivER. 331



Version July 14, 2025 submitted to Journal Not Specified 11 of 16

Appendix B.2 The Improved Sample Diversity of DivER 332

Lemma A2. Let D be a finite set of N points in a metric space (X, d). Let B be a mini-batch of b 333

points sampled from D. The coverage radius of B for D is R(B) = supy∈Dminx∈B d(y, x). We 334

have E[R(Bdiv)] ≤ E[R(Buni)], with strict inequality being typical. 335

Notation: 336

• Buni: A mini-batch of b points selected by random uniform sampling from D. 337

• C = {C1, . . . , Ck}: A partition of D into k non-empty clusters. 338

• Nj = |Cj|: The number of points in cluster Cj, so ∑k
j=1 Nj = N. 339

• bj: The number of points sampled from cluster Cj in stratified sampling. Proportional allocation 340

means bj ≈ b · (Nj/N). We assume ∑k
j=1 bj = b. 341

• Bdiv: A mini-batch formed by sampling bj points from each Cj (typically uniformly at random 342

within Cj). 343

Proof. Let dy(B) = minx∈B d(y, x). So R(B) = maxy∈D dy(B). A direct proof of E[max dy] 344

is complex. Instead, we can argue using the concept of stochastic dominance or by consid- 345

ering the probability of a point being poorly covered. Let Fdiv(r) = P(R(Bdiv) ≤ r) and 346

Funi(r) = P(R(Buni) ≤ r) be the cumulative distribution functions (CDFs) of the coverage 347

radii. If Fdiv(r) ≥ Funi(r) for all r (and strictly greater for some r), then Rdiv is stochastically 348

smaller than Runi, which implies E[Rdiv] ≤ E[Runi]. 349

Consider any point y ∈ D. Suppose y ∈ Cj. For stratified sampling (assuming 350

bj ≥ 1 for the cluster Cj containing y): The bj points sampled from Cj provide "local" 351

coverage for points in Cj. The remaining b− bj points are sampled from other clusters. 352

P(dy(Bdiv) > r) = P(all b points in Bdiv are further than r from y). Since bj points are 353

drawn from Cj, if r is larger than the effective radius of Cj achievable with bj points, this 354

probability becomes small. 355

For uniform random sampling: Let Kj be the (random) number of points in Buni 356

that are drawn from cluster Cj. Kj follows a hypergeometric distribution H(N, Nj, b). 357

The expectation E[Kj] = b · Nj/N ≈ bj. However, Kj can be 0. P(Kj = 0) =
(

N−Nj
b

)

(N
b )

if 358

b ≤ N − Nj. P(dy(Buni) > r) = ∑
b∗j
m=0 P(dy(Buni) > r | Kj = m)P(Kj = m), where b∗j is 359

min(b, Nj). If P(Kj = 0) is substantial (e.g., if Cj is small or b is small relative to N/Nj), 360

and Cj is somewhat isolated from other clusters, then the term P(dy(Buni) > r | Kj = 0) 361

can be large. This is because y must be covered by points sampled from D \ Cj. Stratified 362

sampling (assuming bj ≥ 1) ensures Kj = bj ≥ 1, eliminating the possibility of cluster 363

Cj being entirely unrepresented in the sample (if it was chosen to receive samples). This 364

directly reduces the probability that y ∈ Cj is far from its closest point in Bdiv. 365

More formally, R(B) = maxy∈D dy(B). The uniform random sampling strategy allows 366

for higher variability in the spatial dispersion of points in Buni. Some realizations of Buni 367

will have points clustered in one region of D, leaving other regions poorly covered, leading 368

to a large R(Buni). Stratified sampling, by forcing bj samples from each stratum Cj (for j 369

where bj ≥ 1), ensures a degree of spatial representativeness. This limits the occurrence of 370

very large values of R(Bdiv). If a sampling strategy S1 is more likely to produce "extreme" 371

bad configurations than strategy S2, then we expect E[ f (S1)] ≥ E[ f (S2)] if f measures the 372

"badness". The set of points D can be thought of as a finite probability space where each 373

point has mass 1/N. The coverage radius R(B) indicates how well the empirical measure 374

induced by B covers the true measure of D in a geometric sense. Stratified sampling 375

generally yields empirical measures that are "closer" (in various senses, like reduced 376

variance for means) to the population measure. While a full proof of Fdiv(r) ≥ Funi(r) is 377

intricate for general cases, the intuition is that stratified sampling curtails the right tail of 378

the distribution of R(B) by preventing samples that are very poorly spread relative to the 379



Version July 14, 2025 submitted to Journal Not Specified 12 of 16

cluster structure. This leads to E[R(Bdiv)] ≤ E[R(Buni)]. Strict inequality typically holds 380

if clustering is meaningful (strata differ in location/density) and uniform sampling has a 381

non-negligible chance of missing or undersampling certain regions that stratified sampling 382

covers by design. 383

Appendix C Pseudocode of Algorithms 384

Algorithm A1 DivER Sampling
Inputs:
Replay buffer D, mini-batch size N

1: Cluster samples in D based on zT ,
2: D′ ← {Di|Di contains samples from the i-th cluster},
3: B ← ∅.
4: while D′ ̸= ∅ do
5: Dmin ← arg min

Di∈D′
|Di|;

6: NB = ⌈ |Dmin|
|D′ | N⌉;

7: B← uniformly sample NB episodes from Dmin;
8: B ← B ∪B;
9: D′ ← D′ \Dmin;

10: N ← N − NB;
11: end while
Return B

Algorithm A2 Diversified Experience Replay (DivER)

Parameters: MARL framework θ, target network θ− = θ, representation model
ϕ.

1: Initialize an empty replay buffer D.
2: while training do
3: for episode← 1 to M do
4: Initialize E = ∅.
5: for each time step t do
6: for each agent k do
7: Select an action based on the policy.
8: Store the transition in E.
9: end for

10: Calculate zt with the representation model.
11: end for
12: Calculate the final representation zT ,
13: Add the episodic data E and vector zT to D.
14: end for
15: Sample a mini-batch B according to Algorithm A1.
16: Follow the MARL method to update θ,
17: ϕ← ϕ + λϕ∇ϕ JD,
18: Update zT of each sample in B with new ϕ,
19: Update target network θ− ← θ periodically,
20: Update the cluster labels of all data in D periodically.
21: end while

Appendix D Environment Details 385

Appendix D.1 SMAC 386

SMAC is a simulation environment for research in collaborative multi-agent reinforce- 387

ment learning (MARL) based on Blizzard’s StarCraft II RTS game. It provides various 388



Version July 14, 2025 submitted to Journal Not Specified 13 of 16

micro-battle scenarios and also supports customized scenarios for users to test the algo- 389

rithms. The goal in each scenario is to control different types of ally agents to move or attack 390

to defeat the enemies. The enemies are controlled by a heuristic built-in AI with adjustable 391

difficulty level between 1 to 7. In our experiments, the difficulty of the game AI is set to the 392

highest (the 7th level). The version of StarCraft II is 4.6.2 (B69232) in our experiments, and 393

it should be noted that results from different client versions are not always comparable. 394

Table A1 presents the details of selected scenarios in our experiments. 395

Table A1. Information of selected challenges.

Challenge Ally Units Enemy Units Type Level of Difficulty

3s_vs_5z 3 Stalkers 5 Zealots Homogeneous
Asymmetric Hard

2c_vs_64zg 2 Colossi 64 Zerglings Homogeneous
Asymmetric Hard

MMM2
1 Medivac

2 Marauders
7 Marines

1 Medivac
3 Marauders

8 Marines

Heterogeneous
Asymmetric Super Hard

6h_vs_8z 6 Hydralisks 8 Zealots Homogeneous
Asymmetric Super Hard

corridor 6 Zealots 24 Zerglings Homogeneous
Asymmetric Super Hard

27m_vs_30m 27 Marines 30 Marines Homogeneous
Asymmetric Super Hard

Appendix D.2 SMACv2 396

SMACv2 [31] is proposed to address SMAC’s lack of stochasticity. In SMACv2, the 397

sight range of the agents is narrowed, and the attack ranges of different unit types are no 398

longer the same. The team compositions and agent start positions are generated randomly 399

at the beginning of each episode. These modifications make SMACv2 extremely challenging. 400

It is worth noting that the disparity between the lineups of the two sides can be substantial 401

in some episodes due to the randomness in initialization. In these episodes, the outcomes 402

are almost determined at the initialization stage but are little affected by the policies learned 403

by the algorithms. We sifted out such episodes during testing to prevent blurring the gap 404

between algorithms. The version of the StarCraft II engine is also 4.6.2 (B69232) in our 405

experiments. 406

Table A2. The hyperparameter settings of DivER.

Description Value
Type of value mixer QMIX
Dimension of trajectory embedding 32
Dimension of hidden states in RNN 64
Dimension of the mixing network 32
Dimension of hypernetworks 64
Batch size 128
Trajectories sampled per run 4
Replay buffer size 2500
Discount factor γ 0.99
Probability of random action (ϵ) 1.0∼0.05
Anneal time for ϵ 100000
Type of optimizer Adam
Clustering algorithm K-Means
Number of clusters 8
Learning rate for DivER 0.001
Learning rate for MARL framework 0.001
Target network update interval 200



Version July 14, 2025 submitted to Journal Not Specified 14 of 16

Appendix E Implementation Details 407

Appendix E.1 Settings of Hyperparameters 408

We list the hyperparameters of the DivER in Table A2. The hyperparameters of the 409

baselines in our experiments remain the same as their official implementations. 410

Appendix E.2 Experiments Compute Resources 411

We conducted our experiments on a platform with 2 Intel(R) Xeon(R) Platinum 8280 412

CPU 2.70GHz processors, each with 26 cores. Besides, we use a GeForce RTX 3090 GPU to 413

facilitate the training procedure. The time of execution varies by scenario. 414

Appendix F Further Experiments 415

The extra model parameters introduced by DivER. Since DivER is implemented on 416

the basis of QMIX, one may doubt if the improvement of DivER is due to the increased 417

model size. As Figure 3 shows, the structure of DivER is relatively independent and 418

does not interfere with the decision-making process of QMIX. We further expand the 419

model size of QMIX (denoted as QMIX_Large) to be comparable with that of DivER, and 420

the experiment results are displayed in Figure A1. As we can see, an increase in model 421

size does not yield a significant performance improvement. Therefore, we can deduce 422

that the methodology of DivER rather than the increased parameters is the pivotal factor 423

contributing to its superiority. 424

Figure A1. The ablation study results about the model size.

References 425

1. Xu, Z.; Lyu, Y.; Pan, Q.; Hu, J.; Zhao, C.; Liu, S. Multi-vehicle flocking control with deep deterministic policy gradient method. In 426

Proceedings of the 2018 IEEE 14th International Conference on Control and Automation (ICCA). IEEE, 2018, pp. 306–311. 427

2. Gu, S.; Kuba, J.G.; Chen, Y.; Du, Y.; Yang, L.; Knoll, A.; Yang, Y. Safe multi-agent reinforcement learning for multi-robot control. 428

Artificial Intelligence 2023, 319, 103905. 429

3. Shamsoshoara, A.; Khaledi, M.; Afghah, F.; Razi, A.; Ashdown, J. Distributed cooperative spectrum sharing in uav networks using 430

multi-agent reinforcement learning. In Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking 431

Conference (CCNC). IEEE, 2019, pp. 1–6. 432

4. Zhang, Z.; Han, S.; Wang, J.; Miao, F. Spatial-temporal-aware safe multi-agent reinforcement learning of connected autonomous 433

vehicles in challenging scenarios. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA). 434

IEEE, 2023, pp. 5574–5580. 435

5. Wu, T.; Zhou, P.; Liu, K.; Yuan, Y.; Wang, X.; Huang, H.; Wu, D.O. Multi-agent deep reinforcement learning for urban traffic light 436

control in vehicular networks. IEEE Transactions on Vehicular Technology 2020, 69, 8243–8256. 437

6. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive 438

environments. Advances in neural information processing systems 2017, 30. 439

7. Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W.M.; Zambaldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo, J.Z.; Tuyls, K.; 440

et al. Value-decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296 2017. 441

8. Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Foerster, J.; Whiteson, S. Qmix: Monotonic value function factorisation for 442

deep multi-agent reinforcement learning. In Proceedings of the International conference on machine learning. PMLR, 2018, pp. 443

4295–4304. 444

9. Mahajan, A.; Rashid, T.; Samvelyan, M.; Whiteson, S. Maven: Multi-agent variational exploration. Advances in Neural Information 445

Processing Systems 2019, 32. 446



Version July 14, 2025 submitted to Journal Not Specified 15 of 16

10. Li, C.; Wang, T.; Wu, C.; Zhao, Q.; Yang, J.; Zhang, C. Celebrating diversity in shared multi-agent reinforcement learning. Advances 447

in Neural Information Processing Systems 2021, 34, 3991–4002. 448

11. Wang, T.; Gupta, T.; Mahajan, A.; Peng, B.; Whiteson, S.; Zhang, C. Rode: Learning roles to decompose multi-agent tasks. arXiv 449

preprint arXiv:2010.01523 2020. 450

12. Zhou, G.; Xu, Z.; Zhang, Z.; Fan, G. SORA: Improving Multi-agent Cooperation with a Soft Role Assignment Mechanism. In 451

Proceedings of the International Conference on Neural Information Processing. Springer, 2023, pp. 319–331. 452

13. Zeng, X.; Peng, H.; Li, A. Effective and Stable Role-Based Multi-Agent Collaboration by Structural Information Principles. arXiv 453

preprint arXiv:2304.00755 2023. 454

14. Rashid, T.; Farquhar, G.; Peng, B.; Whiteson, S. Weighted qmix: Expanding monotonic value function factorisation for deep 455

multi-agent reinforcement learning. Advances in neural information processing systems 2020, 33, 10199–10210. 456

15. Wang, J.; Ren, Z.; Liu, T.; Yu, Y.; Zhang, C. Qplex: Duplex dueling multi-agent q-learning. arXiv preprint arXiv:2008.01062 2020. 457

16. Yang, Y.; Hao, J.; Liao, B.; Shao, K.; Chen, G.; Liu, W.; Tang, H. Qatten: A general framework for cooperative multiagent 458

reinforcement learning. arXiv preprint arXiv:2002.03939 2020. 459

17. Mei, Y.; Zhou, H.; Lan, T. Projection-Optimal Monotonic Value Function Factorization in Multi-Agent Reinforcement Learning. 460

In Proceedings of the AAMAS, 2024, pp. 2381–2383. 461

18. Mei, Y.; Zhou, H.; Lan, T.; Venkataramani, G.; Wei, P. Mac-po: Multi-agent experience replay via collective priority optimization. 462

arXiv preprint arXiv:2302.10418 2023. 463

19. Schaul, T. Prioritized Experience Replay. arXiv preprint arXiv:1511.05952 2015. 464

20. Oliehoek, F.A.; Amato, C. A concise introduction to decentralized POMDPs; Springer, 2016. 465

21. Sener, O.; Savarese, S. Active learning for convolutional neural networks: A core-set approach. arXiv preprint arXiv:1708.00489 466

2017. 467

22. Loshchilov, I.; Hutter, F. Online batch selection for faster training of neural networks. arXiv preprint arXiv:1511.06343 2015. 468

23. Jiang, A.H.; Wong, D.L.K.; Zhou, G.; Andersen, D.G.; Dean, J.; Ganger, G.R.; Joshi, G.; Kaminksy, M.; Kozuch, M.; Lipton, Z.C.; 469

et al. Accelerating deep learning by focusing on the biggest losers. arXiv preprint arXiv:1910.00762 2019. 470

24. Katharopoulos, A.; Fleuret, F. Not all samples are created equal: Deep learning with importance sampling. In Proceedings of the 471

International conference on machine learning. PMLR, 2018, pp. 2525–2534. 472

25. Pleiss, G.; Zhang, T.; Elenberg, E.; Weinberger, K.Q. Identifying mislabeled data using the area under the margin ranking. 473

Advances in Neural Information Processing Systems 2020, 33, 17044–17056. 474

26. Paul, M.; Ganguli, S.; Dziugaite, G.K. Deep learning on a data diet: Finding important examples early in training. Advances in 475

neural information processing systems 2021, 34, 20596–20607. 476

27. Oord, A.v.d.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 2018. 477

28. Gutmann, M.; Hyvärinen, A. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In 478

Proceedings of the Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop 479

and Conference Proceedings, 2010, pp. 297–304. 480

29. Fang-Ming, B.; Wei-Kui, W.; Long, C. DBSCAN: Density-based spatial clustering of applications with noise. Journal of Nanjing 481

University(Natural Sciences) 2012, 48, 491–498. 482

30. Samvelyan, M.; Rashid, T.; De Witt, C.S.; Farquhar, G.; Nardelli, N.; Rudner, T.G.; Hung, C.M.; Torr, P.H.; Foerster, J.; Whiteson, S. 483

The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043 2019. 484

31. Ellis, B.; Cook, J.; Moalla, S.; Samvelyan, M.; Sun, M.; Mahajan, A.; Foerster, J.N.; Whiteson, S. SMACv2: An Improved Benchmark 485

for Cooperative Multi-Agent Reinforcement Learning, 2023, [arXiv:cs.LG/2212.07489]. 486

32. Tan, M. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the Proceedings of the tenth 487

international conference on machine learning, 1993, pp. 330–337. 488

33. Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Korjus, K.; Aru, J.; Aru, J.; Vicente, R. Multiagent cooperation and competition 489

with deep reinforcement learning. PloS one 2017, 12, e0172395. 490

34. Son, K.; Kim, D.; Kang, W.J.; Hostallero, D.; Yi, Y. QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent 491

Reinforcement Learning. CoRR 2019, abs/1905.05408, [1905.05408]. 492

35. Iqbal, S.; Sha, F. Actor-Attention-Critic for Multi-Agent Reinforcement Learning, 2019, [arXiv:cs.LG/1810.02912]. 493

36. Su, J.; Adams, S.; Beling, P. Value-decomposition multi-agent actor-critics. In Proceedings of the Proceedings of the AAAI 494

conference on artificial intelligence, 2021, Vol. 35, pp. 11352–11360. 495

37. Gogineni, K.; Wei, P.; Lan, T.; Venkataramani, G. Scalability Bottlenecks in Multi-Agent Reinforcement Learning Systems. arXiv 496

preprint arXiv:2302.05007 2023. 497

38. Lin, L.J. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine learning 1992, 8, 293–321. 498

39. Lee, S.Y.; Sungik, C.; Chung, S.Y. Sample-efficient deep reinforcement learning via episodic backward update. Advances in neural 499

information processing systems 2019, 32. 500

40. Brittain, M.; Bertram, J.; Yang, X.; Wei, P. Prioritized sequence experience replay. arXiv preprint arXiv:1905.12726 2019. 501

http://arxiv.org/abs/2212.07489
http://arxiv.org/abs/1905.05408
http://arxiv.org/abs/1810.02912


Version July 14, 2025 submitted to Journal Not Specified 16 of 16

41. Zha, D.; Lai, K.H.; Zhou, K.; Hu, X. Experience replay optimization. arXiv preprint arXiv:1906.08387 2019. 502

42. Sun, P.; Zhou, W.; Li, H. Attentive experience replay. In Proceedings of the Proceedings of the AAAI Conference on Artificial 503

Intelligence, 2020, Vol. 34, pp. 5900–5907. 504

43. Novati, G.; Koumoutsakos, P. Remember and forget for experience replay. In Proceedings of the International Conference on 505

Machine Learning. PMLR, 2019, pp. 4851–4860. 506

44. Liu, X.H.; Xue, Z.; Pang, J.; Jiang, S.; Xu, F.; Yu, Y. Regret minimization experience replay in off-policy reinforcement learning. 507

Advances in neural information processing systems 2021, 34, 17604–17615. 508

45. Oh, Y.; Shin, J.; Yang, E.; Hwang, S.J. Model-augmented prioritized experience replay. In Proceedings of the International 509

Conference on Learning Representations, 2022. 510

46. Fan, S.; Song, G.; Yang, B.; Jiang, X. Prioritized experience replay in multi-actor-attention-critic for reinforcement learning. In 511

Proceedings of the Journal of Physics: Conference Series. IOP Publishing, 2020, Vol. 1631, p. 012040. 512

47. Wang, Y.; Zhang, Z. Experience selection in multi-agent deep reinforcement learning. In Proceedings of the 2019 IEEE 31st 513

International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2019, pp. 864–870. 514

48. Ahilan, S.; Dayan, P. Correcting experience replay for multi-agent communication. arXiv preprint arXiv:2010.01192 2020. 515

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 516

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 517

people or property resulting from any ideas, methods, instructions or products referred to in the content. 518


	Introduction
	Background
	Dec-POMDP
	One-shot Coreset Selection

	DivER
	Motivation
	Learning Episode Representation
	Sampling Methodology
	Implementation

	Experiments
	Experimental Setup
	Experiment Results on SMAC
	Experiment Results on SMACv2
	Ablation Study

	Conclusion
	Related Works
	Off-policy MARL
	Experience Replay

	Proofs
	The Learning Target for DivER Model
	The Improved Sample Diversity of DivER

	Pseudocode of Algorithms
	Environment Details
	SMAC
	SMACv2

	Implementation Details
	Settings of Hyperparameters
	Experiments Compute Resources

	Further Experiments
	References

